

GOVERNMENT OF ANDHRA PRADESH COMMISSIONERATE OF COLLEGIATE EDUCATION

LINEAR ALGEBRAINNEPRODUCT SPACE ORTHOGONALITY

K.S.I.PRIYADARSINI.
M.Sc, B.Ed (Ph.D)

P.R.GDC(A),KAKINADA Email ID : ksipriyadarsini999@gmail.com

Definition:

Let α, β be vectors in an inner product space V(f). Then α is said to be orthogonal to β if $(\alpha, \beta) = 0$

Ex: If
$$\alpha = (1,1,1)$$
 and $\beta = (1,0,-1)$
$$(\alpha,\beta) = 1 + 0 - 1 = 0$$

Note (a). The relation of orthogonal in an inner product space is symmetric.

i.e
$$(\alpha, \beta) = 0 \Longrightarrow (\beta, \alpha) = 0$$

Therefore β is orthogonal to α

Note (b).1). If α is orthogonal $to\beta$, then any scalar multiple of α is also othogonal $to\beta$.

i.e
$$(k\alpha, \beta) = k(\alpha, \beta) = k.0 = 0$$

Therefore $k\alpha$ is orthogonal to β

Therefore $k\alpha$ is orthogonal to β

2). The zero vector is orthogonal to every vector $(0,\alpha)=0$

Theorem: The vectors α and β in a real inner product space are orthogonal if and only if $\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$

Proof: Let α and β are vectors in inner product space V(F).

Now
$$\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$$

$$\Leftrightarrow (\alpha + \beta, \alpha + \beta) = (\alpha, \alpha) + (\beta, \beta)$$

$$\Leftrightarrow (\alpha. \alpha) + (\alpha, \beta) + (\beta, \alpha) + (\beta, \beta) = (\alpha, \alpha) + (\beta, \beta)$$

$$\Leftrightarrow (\alpha, \beta) + (\beta, \alpha) = 0$$

$$\Leftrightarrow$$
 $(\alpha, \beta) + (\alpha, \beta) = 0$: Real I. P.S

$$\Leftrightarrow 2(\alpha, \beta) = 0$$

$$\Leftrightarrow (\alpha, \beta) = 0$$

 $\Leftrightarrow \alpha, \beta$ are orthogonal

Hence the proof

Definition: Orthogonal set:

Let V(F) be an inner product space. A nonempty sub set S of V is said to be an orthogonal set if any two distinct vectors in S are orthogonal. (OR)

Let $S = \{ \alpha_{1,}\alpha_{2}, \alpha_{3,...}\alpha_{n} \}$ is orthogonal subset of an inner product space if

$$(\alpha_i, \alpha_j) = 0$$
 if $i \neq j$ and

$$(\alpha_i, \alpha_j) = 1 \text{ if } i = j \text{ in V(F)}$$

Theorem: Every orthogonal set of non zero vectors in an inner product space V(F) is linearly independent.

Proof: Let S be a an orthogonal set of non zero vectors in an inner product space V(F).

Let $S_1 = \{ \alpha_{1,\alpha_2}, \alpha_{3,\dots} \alpha_n \}$ be finite subset of S, contain 'n' non zero vectors

$$\Rightarrow$$
 $a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n = 0$

Let
$$0 = (0, \alpha_k)$$

$$\Rightarrow (a_1\alpha_{1,} + a_2\alpha_{2} + \dots + a_n\alpha_{n,}\alpha_k) = (\overline{0}, \alpha_k)$$

$$\Rightarrow a_1(\alpha_1, \alpha_k) + a_2(\alpha_2, \alpha_k) + \dots + a_k(\alpha_k, \alpha_k) +$$

+
$$a_n(\alpha_n, \alpha_k) = \overline{0}$$

$$\Rightarrow a_1(0) + a_2(0) + \dots + a_k(\alpha_k, \alpha_k) + \dots + a_n(0) = 0$$

$$\Rightarrow a_k(\alpha_k, \alpha_k) = \overline{0}$$

$$\Rightarrow a_k \parallel \alpha_k \parallel^2 = \overline{0}$$

$$\Rightarrow a_k = \overline{0}, \ (\because \forall 1 \le k \le n)$$

- $\cdot \cdot s_1$ is linearly independent
- ∴ Every finite subset of S is linearly independent
- ∴ Every orthogonal set of nonzero vectors in an inner product is space V(F)is linearly independent.

THANK YOU